Package ‘BayesLogit’

May 6, 2012

Version 0.1-0

Date 2012-05-06

Depends R (>= 2.14.0)

Title Logistic Regression

Author Nicolas Polson, James G. Scott, and Jesse Windle

Maintainer Jesse Windle <jwindle@ices.utexas.edu>

Description The BayesLogit package does posterior simulation for binary and multinomial logistic regression using the Polya-Gamma latent variable technique. This method is fully automatic, exact, and fast. A routine to efficiently sample from the Polya-Gamma class of distributions is included.

License GPL (>= 3)

Repository CRAN

Date/Publication 2012-05-06 14:11:24

R topics documented:

logit 2
logit.EM 3
mlogit 5
rks 7
rpg 8
spambase 9

Index 11
logit

Default Bayesian Logistic Regression

Description

Run a Bayesian logistic regression.

Usage

logit(y, X, n=rep(1,length(y)),
 y.prior=0.5, x.prior=colMeans(as.matrix(X)), n.prior=1.0,
 samp=1000, burn=500)

Arguments

y An N dimensional vector; \(y_i \) is the average response at \(x_i \).
X An N x P dimensional design matrix; \(x_i \) is the ith row.
n An N dimensional vector; \(n_i \) is the number of observations at each \(x_i \).
y.prior Average response at \(x.prior \).
x.prior Prior predictor variable.
n.prior Number of observations at \(x.prior \).
samp The number of MCMC iterations saved.
burn The number of MCMC iterations discarded.

Details

Logistic regression is a classification mechanism. Given the binary data \{\(y_i \)\} and the p-dimensional predictor variables \{\(x_i \)\}, one wants to forecast whether a future data point \(y^* \) observed at the predictor \(x^* \) will be zero or one. Logistic regression stipulates that the statistical model for observing a success=1 or failure=0 is governed by

\[
P(y^* = 1|x^*, \beta) = (1 + \exp(-x^* \beta))^{-1}.
\]

Instead of representing data as a collection of binary outcomes, one may record the average response \(y_i \) at each unique \(x_i \) given a total number of \(n_i \) observations at \(x_i \). We follow this method of encoding data.

Polson and Scott suggest placing a Jeffrey’s Beta prior \(\text{Be}(1/2,1/2) \) on

\[
m(\beta) := P(y_0 = 1|x_0, \beta) = (1 + \exp(-x_0 \beta))^{-1},
\]

which generates a Z-distribution prior for \(\beta \),

\[
p(\beta) = \exp(0.5x_0 \beta)/(1 + \exp(0.5x_0 \beta)).
\]

One may interpret this as "prior" data where the average response at \(x_0 \) is 1/2 based upon a "single" observation. The default value of \(x_0 = \text{mean}(x), x = \{ x_i \} \).
Value

logit returns a list.

- **beta**: A samp x P array; the posterior sample of the regression coefficients.
- **w**: A samp x N' array; the posterior sample of the latent variable. WARNING: N' may be less than N if data is combined.
- **y**: The response matrix–different than input if data is combined.
- **X**: The design matrix–different than input if data is combined.
- **n**: The number of samples at each observation–different than input if data is combined.

References

See Also

`rpg`, `logit.EM`, `mlogit`

Examples

```r
## From UCI Machine Learning Repository.
data(spambase);

## A subset of the data.
sbase = spambase[seq(1,nrow(spambase),1),];

X = model.matrix(is.spam ~ word.freq.free + word.freq.1999, data=sbase);
y = sbase$is.spam;

## Run logistic regression.
output = logit(y, X, samp=1000, burn=100);
```

Description

Expectation maximization for logistic regression.
Usage

logit.EM(y, X, n=rep(1,length(y)),
 y.prior=0.5, x.prior=colMeans(as.matrix(X)), n.prior=1.0,
 tol=1e-9, max.iter=100)

Arguments

y An N dimensional vector; \(y_i \) is the average response at \(x_i \).
X An N x P dimensional design matrix; \(x_i \) is the ith row.
n An N dimensional vector; \(n_i \) is the number of observations at each \(x_i \).
y.prior Average response at \(x.prior \).
x.prior Prior predictor variable.
n.prior Number of observations at \(x.prior \).
tol Threshold at which algorithm stops.
max.iter Maximum number of iterations.

Details

Logistic regression is a classification mechanism. Given the binary data \(\{ y_i \} \) and the \(p \)-dimensional predictor variables \(\{ x_i \} \), one wants to forecast whether a future data point \(y^* \) observed at the predictor \(x^* \) will be zero or one. Logistic regression stipulates that the statistical model for observing a success=1 or failure=0 is governed by

\[
P(y^* = 1 | x^*, \beta) = (1 + \exp(-x^* \beta))^{-1}.
\]

Instead of representing data as a collection of binary outcomes, one may record the average response \(y_i \) at each unique \(x_i \) given a total number of \(n_i \) observations at \(x_i \). We follow this method of encoding data.

Polson and Scott suggest placing a Jeffrey’s Beta prior \(\text{Be}(1/2, 1/2) \) on

\[
m(\beta) := P(y_0 = 1 | x_0, \beta) = (1 + \exp(-x_0 \beta))^{-1},
\]

which generates a Z-distribution prior for \(\beta \),

\[
p(\beta) = \exp(0.5x_0 \beta)/(1 + \exp(0.5x_0 \beta)).
\]

One may interpret this as "prior" data where the average response at \(x_0 \) is \(1/2 \) based upon a "single" observation. The default value of \(x_0 = \text{mean}(x) \), \(x = \{ x_i \} \).

Value

beta The posterior mode.
iter The number of iterations.
mlogit

References

See Also
rpg.logit,mlogit

Examples

From UCI Machine Learning Repository.
data(spambase);

A subset of the data.
sbase = spambase[seq(1,nrow(spambase),10),];

X = model.matrix(is.spam ~ word.freq.free + word.freq.1999, data=sbase);
y = sbase$is.spam;

Run logistic regression.
output = logit.EM(y, X);

mlogit

Bayesian Multinomial Logistic Regression

Description
Run a Bayesian multinomial logistic regression.

Usage

mlogit(y, X, n=rep(1,nrow(as.matrix(y))),
m.0=as.array(0, dim=c(ncol(X), ncol(y))),
P.0=as.array(0, dim=c(ncol(X), ncol(X), ncol(y))),
samp=1000, burn=500)

Arguments

y An N x J-1 dimensional matrix; y_{ij} is the average response for category j at x_i.
X An N x P dimensional design matrix; x_i is the ith row.
n An N dimensional vector; n_i is the total number of observations at each x_i.
Details

Multinomial logistic regression is a classification mechanism. Given the multinomial data \(\{y_i\} \) with \(J \) categories and the \(p \)-dimensional predictor variables \(\{x_i\} \), one wants to forecast whether a future data point \(y^* \) at the predictor \(x^* \). Multinomial Logistic regression stipulates that the statistical model for observing a draw category \(j \) after rolling the multinomial die \(n^* = 1 \) time is governed by

\[
P(y^* = j|x^*, \beta, n^* = 1) = e^{x^* \beta_j} / \sum_{k=1}^{J} e^{x^* \beta_k}.
\]

Instead of representing data as the total number of responses in each category, one may record the average number of responses in each category and the total number of responses \(n_i \) at \(x_i \). We follow this method of encoding data.

We assume that \(\beta_J = 0 \) for purposes of identification!

You may use mlogit for binary logistic regression with a normal prior.

Value

mlogit returns a list.

beta A samp x P x J-1 array; the posterior sample of the regression coefficients.
w A samp x N’ x J-1 array; the posterior sample of the latent variable. WARNING: N’ may be less than N if data is combined.
y The response matrix–different than input if data is combined.
x The design matrix–different than input if data is combined.
n The number of samples at each observation–different than input if data is combined.

References

See Also

rpg, logit.EM, logit
Examples

```r
## Use the iris dataset.
N = nrow(iris)
P = ncol(iris)
J = nlevels(iris$Species)

X = model.matrix(Species ~ ., data=iris);
y.all = model.matrix(~ Species - 1, data=iris);
y = y.all[, -J];

out = mlogit(y, X, samp=1000, burn=100);
```

rks

The Kolmogorov-Smirnov distribution

Description

Generate a random variate from the Kolmogorov-Smirnov distribution.

This is not directly related to the Polya-Gamma technique, but it is a nice example of using an alternating sum to generate a random variate.

Usage

```r
rks(N=1)
```

Arguments

- `N`
The number of random variates to generate.

Details

The density function of the KS distribution is

\[
f(x) = 8 \sum_{i=1}^{\infty} (-1)^{n+1} n^2 e^{-2n^2 x^2}.
\]

We follow Devroye (1986) p. 161 to generate random draws from KS.

References

rpg

The Polya-Gamma Distribution

Examples

\[X = \text{rks}(1000) \]

rpg

Description

Generate a random variate from the Polya-Gamma distribution.

Usage

\[
\begin{align*}
\text{rpg.gamma}(\text{num}=1, \text{n}=1, \text{z}=0.0, \text{trunc}=200) \\
\text{rpg.devroye}(\text{num}=1, \text{n}=1, \text{z}=0.0)
\end{align*}
\]

Arguments

You may call rpg when \(n \) and \(z \) are vectors.

- **num**: The number of random variates to simulate.
- **n**: Degrees of freedom.
- **z**: Parameter associated with tilting.
- **trunc**: The number of elements used in sum of gammas approximation.

Details

A random variable \(X \) with distribution \(\text{PG}(n,z) \) is generated by

\[
X \sim 2.0 \sum_{k=1}^{\infty} \frac{G(n,1)}{(k-1/2)^2 4.0 \pi^2 + z^2}.
\]

The density for \(X \) may be derived from \(Z \) and \(\text{PG}(n,0) \) as

\[
p(x|n, z) \propto \exp(-z^2/2x)p(x|n, 0).
\]

Thus \(\text{PG}(n,z) \) is an exponentially tilted \(\text{PG}(n,0) \).

Two different methods for generating this random variable are implemented. In general, you may use \(\text{rpg.gamma} \) to generate an approximation of \(\text{PG}(n,z) \) using the sum of Gammas representation above. When \(n \) is a natural number you may use \(\text{rpg.devroye} \) to sample \(\text{PG}(n,z) \). The later method is fast.
Value

This function returns num Polya-Gamma samples.

References

See Also

logit.EM, logit.mlogit

Examples

```r
a = c(1, 2, 3);
b = c(4, 5, 6);

## If a is only integers, use Devroye-like method.
X = rpg.devroye(1, a, b);

a = c(1.2, 2.3, 3.2);
b = c(4, 5, 6);

## If a has scalars use sum-of-gammas method.
X = rpg.gamma(1, a, b);
```

spambase

Spambase Data

Description

The spambase data has 57 real valued explanatory variables which characterize the contents of an email and and one binary response variable indicating if the email is spam. There are 4601 observations.

Format

A data frame: the first column is a binary response variable indicating if the email is spam. The remaining 57 columns are real valued explanatory variables.

Details

Of the 57 explanatory variables, 48 describe word frequency, 6 describe character frequency, and 3 describe sequences of capital letters.

word.freq.<word> A continuous explanatory variable describing the frequency with which the word `<word>` appears; measured in percent.
char.freq.<char> A continuous explanatory variable describing the frequency with which the character <char> appears; measured in percent.

capital.run.length.<oper> A statistic involving the length of consecutive capital letters.

Use names to see the specific words, characters, or statistics for each respective class of variable.

References

Index

*Topic Polya-Gamma
 rpg, 8
*Topic datasets
 spambase, 9
*Topic logit
 logit, 2
 logit.EM, 3
 mlogit, 5
*Topic polyagamma
 rpg, 8
*Topic regression
 logit, 2
 logit.EM, 3
 mlogit, 5
*Topic rks
 rks, 7
*Topic rpg
 rpg, 8

logit, 2, 5, 6, 9
logit.EM, 3, 3, 6, 9
mlogit, 3, 5, 5, 9
rks, 7
rpg, 3, 5, 6, 8
spambase, 9