A Lotka-Volterra Competition Model of Social Media Sites

By: Aditya Patel
Courant Institute of Mathematics
DCSM Workshop
May 15, 2012
Goal

To model competition between social media sites, in terms of users, by using the Lotka-Volterra equations
Outline

• Goal
• Introduction
 – Background
 – Question
• The Model
 – Parameters
 – Equations
 – Data
 – Analysis
• Results
 – Fixed Parameters
 – Stochastic Process
• Substantive Results
• Moving Forward
Background

- Across all social media sites, there are approximately a billion users.
 - 526 million daily Facebook active users in March 2012.
 - 800+ million unique users visit YouTube each month.
 - 6+ million Tumblr users.
- Social Media is used as a marketing tool to promote a party’s product (consumer goods, ideas, etc) over competitors’.
- Social media has about 2.5 more long-term elasticity than traditional advertising methods. (Trusov Bucklin Pauwels 2008)
- An increase of unique users of a social media site translates to an increase in the consumption of the product. (Huang Singh Ghose 2011)
Uses for Social Media:

• Enhance Brand Awareness
• Protect Your Party’s Reputation
• Strengthen Public Relations
• Extend a Party’s Customer Service
• Facilitate Research and Development
• Build Community of Advocates
• Driving Sales and Leads (Winner-Take-All)
Question

How can we model the number of unique users of a Social Media Site while it is interacting with other sites?
Subsequent Questions

• What factors determine the intrinsic growth rate?
 – Technology, Innovation, Network Expansion, etc.

• How are the interactions with other social media sites determinant of the unique site visits?
 – Establishing a differentiated niche role in the market.

• How are internal interactions determinant of the user population?
 – Like-minded users tend to congregate with each other.
Definitions and Terms

• **Unique Users**: Measures the popularity of a website over a period of time. Usually requires an IP address and the cookies that correspond to the user activity.

• **User-Generated Content**: All content on a social media site is produced solely by user interactions. The site just provides the tools to allow users to communicate with each other.

• **Winner-Take-All**: The main idea behind a Social Media Site is to obtain the maximum number of unique users, where the maximum number is all the users of a population.
The Model

- Two Lotka-Volterra competition equations with six parameters.
- Use Lotka-Volterra because one can translate biological population models to SMS user growth models.
 - Two species competing for the same food source is the same idea as for two sites competing for the pool of user.
- Not many biological models are used to model competition between SMS.
The Model

\[
\frac{dP_x}{dt} = P_x \left(a_x + b_x P_x + c_{xy} P_y \right)
\]

\[
\frac{dP_y}{dt} = P_y \left(a_y + b_y P_y + c_{yx} P_x \right)
\]

\[c_{ij} = \begin{bmatrix} b_i & c_{ij} \\ c_{ji} & b_j \end{bmatrix}, \quad c_{ij} \neq c_{ji}\]

Here K_i is the carrying capacity for SMS i.

\[b_i = \frac{a_i}{K_i}\]
The Model

- **First Model**: The coefficients are fixed, which models a specific condition given a time interval, and is based on set parameters. These coefficients are fitted for the data.

- **Second Model**: An unique model, which is based off the initial Lotka-Volterra model presented, but extends off the first model by incorporating a hierarchal model. The interaction between the two sites is now assumed to be a stochastic process. The external interaction rate, c_{ij}, is not fixed and continuously evolving. This coefficient was not directly determined by the data.
 - One model examines c_{ij} was a biased random walk
The Parameters

• **Who:** Two competing Social Media Sites (X and Y).

• **What:** Competing over unique users. This model assumes there are a set number of users in the system and a user can only be a user of X or Y.

• **When:** Over discrete time-steps \(d_t\), modeled over a year’s span.

• **Why:** To maximize the number of unique users at the end of the time steps (X and Y).

• **How:** Various interactions, both internal and external \((b_i\) and \(c_{ij}\)) that influence growth.
The Parameters

Exogenous Growth Rate (a_i): Intrinsic rate of growth for the site, meaning this is the rate at which the site increases the number of unique users.

- Positive a_i: increasing rate of unique users
- Negative a_i: decreasing rate of unique users

Internal Interaction Rate (b_i): This parameter represents the rate that user interactions within the community promote growth or decay. This rate represents the efficiency of the population based on available resources.

- Negative b_i: Loss of users based on internal interactions. Only a negative rate was observed from the data.

External Interaction Rate (c_{ij}): This is the rate that determines the loss or gain of users based on its interactions with other sites. It is important to note that the rate in which A interacts with B does not equal the rate at which B interacts with A.

- Positive c_{ij}: Rate of gain of users from Site J
- Negative c_{ij}: Rate of loss of users to Site J
Data

• Collected from www.siteanalytics.compete.com, which counts and calculates the number of Unique Users of a site within a week (discrete time steps).
 – The time frame for collection is Monday 12:00 AM to Sunday 11:59 PM.

• Tracked the number of unique visitors that logged on to eHarmony.com and Match.com since January 2011 by creating an Microsoft Excel Spreadsheet.
 – Every week, starting from Week 1, corresponded to an exact number of UU that site received from the previous week.

• These sites had the most data available, hence are often sited in literature, like Zhang Sarvary 2011.
Data

• The data is representative of the change in the amount of UU over a discrete span of time.
 – This showed the growth trends of eHarmony.com and match.com over different discrete time intervals.

• It is important to note there are many users that just browse and do not interact with the other users on the site. They were excluded from the data set.
 – If a user had an exchange with another user, then and only then they were counted as UU, otherwise considered to be passive users.
 – These users have little to no effect on the site, hence are not incorporated into the model.
Analysis

• An OLS analysis was conducted on the plot of the data to determine the best fit.
 – The set of data was parameter fitted to a regression model using Science Workshop, a Microsoft Excel based program that runs various OLS regression models.

• The two sets of data were plotted individually and run through the parameter fitting process.
 – From this the intrinsic rate, internal interaction rate and the external interaction rate were determined.
Analysis (The Parameters)

• Plot the two data sets individually and then running the OLS by using the ScienceWorkshop software program.
 – The equilibrium states were determined for each plots.
• The Multi-Variable Fit program then utilizes the initial, overall rate of growth, and equilibrium values to estimate the parameters for each set of data.
The Modeling Results:
Weak External Interaction

\[a_x = 0.5, \ b_x = -0.01, \ c_{xy} = -0.04, \ a_y = 0.3, \ b_y = -0.02, \ c_{yx} = -0.01 \]
The Modeling Results:
Strong External Interaction

\[a_x = 0.5, \quad b_x = -0.01, \quad c_{xy} = -0.4, \quad a_y = 0.3, \quad b_y = -0.02, \quad c_{yx} = -0.25 \]
The Modeling Results: Similar Niche Role

\[a_x = 0.2, \quad b_x = -0.04, \quad c_{xy} = 0.015, \quad a_y = 0.25, \quad b_y = -0.05, \quad c_{yx} = 0.2 \]
The Modeling Results: Different Niche Role

\[a_x = 0.2, \quad b_x = -0.05, \quad c_{xy} = 0.01, \quad a_y = -0.05, \quad b_y = -0.015, \quad c_{yx} = 0.05 \]
Initial Results

• Gives results with a given set of data, hence fixed coefficients.
• However, in real world situations the parameters are not set and actually evolve over time.
 – The interactions are stochastic processes.
• Further model the interactions when the external interaction rates are biased random-walks. C_{ij} changes values at each time step.
 – Will examine Different and Similar Competition Models
 • a_i and b_i are the same as those in the previous model.
The Modeling Results: Similar Niche Role, with Stochastic c_{ij}

$$c_{xy} = \begin{cases} 0.015, \\ -0.015 \end{cases}, \quad p = .5$$

$$c_{yx} = \begin{cases} 0.02, \\ -0.02 \end{cases}, \quad p = .5$$
The Modeling Results: Different Niche Role, with Stochastic c_{ij}

\[c_{xy} = \begin{cases}
0.015, & p = 0.5 \\
-0.01, &
\end{cases} \]

\[c_{yx} = \begin{cases}
0.055, & p = 0.5 \\
-0.05, &
\end{cases} \]
The Substantive Results

• The interactions between two social media sites can be modeled by Lotka-Volterra equations, by representing the external interaction rate as a stochastic process.

• The external interaction rate serves as a key driver for the growth of Unique Users between two Social Media Sites.

• The model more closely mimics a real word situation where the interactions between two sites is constantly evolving over time.

• Examples of this include match.com, who to compete with eHarmony added their own match-making algorithm to attract users that were looking for life-partners.
 – Even though eHarmony and match.com are in the same general social media category, each plays a different niche role. (Match.com is for general dating, while eHarmony.com is for more serious singles looking for life partners).

• A more recent example is Facebook constantly eliminating their competitors through acquisitions (Instagram) or Facebook continually offering new technologies to users (Timeline).
Moving Forward

• Future work:
 – Model growth with general intrinsic and internal interaction rates. Not fixing the coefficients but allowing them to adapt and evolve in the system.
 – Allow for correlation between the interaction rates. This will more closely model real world situations in which user networks are intertwined.
 • Incorporate preference into the system (Indian Buffet Process).
 – Increase number of populations and interpret how the driving processes effect the growth of the Social Media Sites.
 – Allow for users to join multiple sites (multi-homing), as the literature shows that 40% of people maintain multiple profiles over various sites. (Lenhart 2009)

http://siteanalytics.compete.com/match.com/

http://siteanalytics.compete.com/eharmony.com/